
If you Can’t Beat Them, Join Them:

Hamza Harkous and Karl Aberer

1

A Usability Approach to
Interdependent Privacy in Cloud Apps

hamzaharkous.com

http://hamzaharkous.com

Growing Business Adoption
of Cloud Ecosystems

*Skyhigh Networks. Cloud Report | Skyhigh Networks. https://www.skyhighnetworks.com/cloud-report/

https://www.skyhighnetworks.com/cloud-report/

3

Your Files

CSPs

3rd party apps

Files

Organizations use 10-20 times more
cloud apps than their IT departments think*.

The Proliferation of
new Adversaries:

6

3rd party apps

7

average financial impact on a company as a result of a

cloud-storage data breach

Elastica Cloud Threat Labs. Q2 2015 Shadow Data Report: https: //www.elastica.net/q2-2015-shadow-data-report/

$13.85M

http://www.elastica.net/q2-2015-shadow-data-report/

8

76%

of Google Drive apps featured on Chrome Store

ask for full access to all your files*

*Harkous et al. The Curious Case of the PDF Converter that Likes Mozart:
Dissecting and Mitigating the Privacy Risk of Personal Cloud Apps. (PoPETs 2016)

9

of documents are
shared with at least

1 other user

37.2%

*Elastica Cloud Threat Labs. 1H 2016 Shadow Data Report. 2016.

*Skyhigh Networks. Cloud Adoption and Risk Report. 2015.

9

of documents are
shared with at least

1 other user

37.2% 23%
of documents are
broadly shared

(with all employees or
with outsiders)

*Elastica Cloud Threat Labs. 1H 2016 Shadow Data Report. 2016.

*Skyhigh Networks. Cloud Adoption and Risk Report. 2015.

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6

10

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6

Too Many Shareholders
→ Larger Attack Surface

10

Company 1 Company 2 Company 3

11

Company 1 Company 2 Company 3

Fewer Shareholders →
Narrower attack surface

11

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6

Challenge

Shared Data Non-shared Data

You

12

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6

Challenge

Shared Data Non-shared Data

You

12

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6

Challenge

Shared Data Non-shared Data

You

12

Challenges
You

13

Challenges
You Cannot remember all companies

13

Challenges
You Cannot remember all companies

Don’t know what others install
so that you don’t give access to new companies

13

Challenges
You Cannot remember all companies

Don’t know what others install
so that you don’t give access to new companies

Cannot control what others install

13

14

Interdependent Privacy

"The privacy of individual users is bound to be affected by the decisions of
others, and could be out of their own control"*

14

Interdependent Privacy

"The privacy of individual users is bound to be affected by the decisions of
others, and could be out of their own control"*

Originally introduced in the context of Facebook apps
- Biczok and Chia, Interdependent privacy: Let me share your data. In FC 2013

- Pu and Grossklags, An economic model and simulation results of app adoption decisions on networks with interdependent privacy
consequences, GameSec 2014

14

Interdependent Privacy

"The privacy of individual users is bound to be affected by the decisions of
others, and could be out of their own control"*

* Olteanu, et al. "Quantifying interdependent privacy risks with location data." IEEE TMC (2016).

Also used in the context of location privacy

Originally introduced in the context of Facebook apps
- Biczok and Chia, Interdependent privacy: Let me share your data. In FC 2013

- Pu and Grossklags, An economic model and simulation results of app adoption decisions on networks with interdependent privacy
consequences, GameSec 2014

15

of cloud apps with full
access get the

collaborators’ data

100%2%

of Facebook apps get the

friends’ data*

- Biczok and Chia, Interdependent privacy: Let me share your data. In FC 2013

16

Contributions
• First to study the problem in the context of cloud apps.

16

Contributions
• First to study the problem in the context of cloud apps.

• We quantify the effects of interdependent privacy in the wild.

16

Contributions
• First to study the problem in the context of cloud apps.

• We quantify the effects of interdependent privacy in the wild.

• We propose a usable privacy solution to mitigate the issue.

16

Contributions
• First to study the problem in the context of cloud apps.

• We quantify the effects of interdependent privacy in the wild.

• We propose a usable privacy solution to mitigate the issue.

• We showcase the network effect of privacy-aware decisions at scale.

17

Research Question- 1

How significant is the impact of
collaborators’ app adoption

decisions on the users’ privacy loss?

Dataset study:
Google Drive+ PrivySeal

18

+

privyseal.epfl.ch

http://privyseal.epfl.ch

Anonymized Dataset

20

183 Google Drive users

131 Google Drive apps

≥ 10 files each

≥ 5% shared files

Anonymized Dataset

20

183 Google Drive users

131 Google Drive apps

Data:
- anonymized user ids
- anonymized file ids
- list of collaborators per file
- list of apps per user
- vendor for each app

≥ 10 files each

≥ 5% shared files

Anonymized Dataset

21

For collaborators not in the
dataset, assign the apps of a
random user from the dataset

Anonymized Dataset

21

For collaborators not in the
dataset, assign the apps of a
random user from the dataset

Anonymized Dataset

21

For collaborators not in the
dataset, assign the apps of a
random user from the dataset

Anonymized Dataset

21

For collaborators not in the
dataset, assign the apps of a
random user from the dataset

Anonymized Dataset

21

For collaborators not in the
dataset, assign the apps of a
random user from the dataset

3,422 users+collaborators

Metric: Vendors’ File Coverage

number of files of user u accessible by vendor v

number of files of user u

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

for a user u and set V of vendors

23

Why VFC?

Easy to relay to the user:
 "the percentage of your files accessible by the company"

23

Why VFC?

Easy to relay to the user:
 "the percentage of your files accessible by the company"

Does not need external vendor evaluations:
 e.g. based on reputation, number of installations, etc

Metric: Vendors’ File Coverage

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

Part due to the users’ decisions

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

vendors authorized by the user

Metric: Vendors’ File Coverage

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

Part due to the users’ decisions

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

vendors authorized by the user

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

Part due to the collaborators’ decisions

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

vendors authorized by the collaborators

Metric: Vendors’ File Coverage

Combined metric due to the users’ and the collaborators

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

vendors authorized by the user

Notation Explanation

u user
v vendor
C(u) Collaborators of u
V
u

set of vendors authorized by u
V
c(u) set of vendors authorized by collaborators of u

VFC
u

(V) file coverage due to the vendors in set V
F
u

set of files of u
F
u,v

set of files of u accessible by vendor v

Table 1: Summary of notations used

Each user has access to a set F
u

of files stored at the
CSP. A subset of these files is owned exclusively by the data
subject while the other subset is composed of files that are
each shared with at least one other collaborator. We denote
the set of all collaborators of user u by C(u). For simplicity
reasons, we will assume throughout this work that the files
of all data subjects, as well as the collaborators for each file,
are all fixed from a reference step t = 0. Using the CSP’s
API, the vendor v can get access, at step t 2 N, to the
subject’s data upon user authorization, which consists of u
accepting a list of permissions. We will alternatively refer
to this as app installation, and we will assume that exactly
one app is installed at each step t. Permissions are named
di↵erently across various providers, but, in general, we can
categorize them into three categories:

• per-file access: where the user has to authorize the ven-
dor for each file access individually. This is typically done
via a file picker provided by the CSP itself.

• full-access: where the vendor gets access to all users’
data. In the interface, this is worded, for instance, as
“View the files in your Google Drive” or “access to the
files and folders in your Dropbox”.

• per-type access: where the vendor gets access to all
files of a specific type. For example, Dropbox words it as
“access to images in your Dropbox”. Some platforms, like
Google Drive, do not provide app developers with such
fine-grained options.

The authorization can also give v access to files shared
with the collaborators of u. Similarly, collaborators of u can
install apps that expose files shared with u to new vendors.
We denote the set of files of u accessible by vendor v at step
t as F

u,v

(t)1.

2.2 User Model
A user is further assumed to be self-interested, i. e., only

caring about optimizing the privacy of the data subject
(a.k.a., privacy egoist), and non-cooperative, i. e., does not
coordinate her decisions with others. We do not assume
that the risks of installing each app are known to the users
or calculated a priori. In fact, unlike other 3rd party app
ecosystems, the risk of each cloud app cannot be automati-
cally estimated based on techniques such as taint tracking [5]
or code analysis [6] because the main app’s functionality is

1Although we do not consider file deletion in this work, we note
that, in the worst case, the vendor can still have access to copies
of files it saved before the user deleted them.

typically implemented on the server side (which cannot be
accessed by external entities). Such assumptions constitute
the worst case in the scenarios we consider, and further pri-
vacy optimizations can be obtained by relaxing them.
We also assume that the mental model for privacy-concerned

users matches the possible permission granularities they are
given. Accordingly, privacy-concerned users can have one of
the following privacy-goal granularities2:

• per-type privacy goal: where users aim to optimize
their privacy independently for di↵erent file types. For
example, in an ecosystem like Dropbox, where per-type
access is an option, users might follow the separation-
of-concerns principle. Hence, they might install photo-
related apps from a set of vendors that is di↵erent from
the set authorized for document processing.

• all-files privacy goal: where users aim to reduce the
privacy risk for their entire set of files. This can be in
the case of ecosystems which do not have the option of
per-type access, like Google Drive. It can be also the case
that a user of Dropbox has this goal in mind despite being
presented with finer-grained app permissions.

2.3 Threat Model
We consider the 3rd party app vendors as the adversary

(and not the CSP). The privacy indicator we introduce is
best implemented by the CSP, which already has access to
the users’ and collaborators data. Alternatively, this can be
a feature within Cloud Access Security Brokers (e.g., Sky-
High Networks, Netskope, etc.), which are already trusted
by thousands of enterprises to protect their cloud data against
other 3rd parties. Moreover, we consider the protection
against over-privileged apps as an orthogonal problem, which
we have considered in [9]. We rather focus on the interde-
pendent privacy problem, which covers all vendors with full
access and is an issue in least-privileged apps too.

2.4 Privacy Loss Metrics
In order to quantify the privacy loss that a user incurs with

time, we introduce now the Vendors File Coverage (VFC)
metric. Consider a user u and a set V of vendors at a certain
time step. For notation simplicity, we will omit the time step
henceforth. VFC

u

(V) is computed as the summation of the
files’ fractions shared with each of these vendors:

VFC
u

(V) =
X

v2V

|F
u,v

|
|F

u

| (1)

Intuitively, VFC
u

(V) increases as vendors in V get access
to more files of u. It has the range [0, |V |]. 3

If we consider the set V
u

of vendors explicitly authorized
by user u, we can define the Self-Vendors File Coverage as:

Self-VFC
u

= VFC
u

(V
u

) (2)

Similarly, if we consider the set V
C(u) of vendors autho-

rized by the collaborators C(u) of u, we can define the
Collaborators-Vendors File Coverage as:

Collaborators-VFC
u

= VFC
u

(V
C(u)) (3)

2Per-file access already achieves the least privilege possible.
3We do not normalize VFC

u

(V) by |V | as multiple vendors with
access to all the user’s files induce a higher privacy loss than one
vendor with such access.

vendors authorized by the collaborators

Finally, the Aggregate VFC
u

for a user u is that due to all
vendors authorized by u or its collaborators:

Aggregate-VFC
u

= VFC
u

(V
u

[V
C(u)) (4)

Throughout this work, we will use the terms privacy loss
and VFC interchangeably. As will become evident in Sec-
tion 4, this metric choice allows relaying a message that is
simple enough for users to grasp, yet powerful enough to
capture a significant part of the privacy loss. Obviously,
one can resort to a deeper inspection of content or meta-
data sensitivity (as in [8]) had the purpose been finding the
best privacy model in general. However, for instigating a
behavioral change, telling users that a company has 30%
of their files is more concrete than a black-box description
informing them that the calculated loss is 30% and consti-
tutes less information-overload than presenting them with
detailed loss metrics.

3. COLLABORATORS’ IMPACT
At this point, we are in a position to handle the first re-

search question on the extent of collaborators’ contribution
to a user’s privacy loss. Hence, we want to test the following
hypothesis:

H1: The collaborators’ app adoption decisions have a sig-
nificant impact on the user’s privacy loss.

If this hypothesis is valid in practice, it provides a strong
motivation for designing privacy notices that aid users in ac-
counting for their collaborators’ decisions, which is what we
will study in Section 4. Towards that, we will be dissecting
the privacy loss, quantified by VFC , that users incur in a
realistic 3rd party cloud apps dataset.

3.1 The Case of Google Drive
To study the problem in a realistic context, we will be

taking Google Drive as a case study in this work, given that
it has one of the most popular 3rd party ecosystems. Never-
theless, the insights gained from our work are applicable to
other cloud platforms as well. The main (content-related)
Google Drive permissions that 3PC apps’ vendors can re-
quest are presented Table 2, along with the Google-provided
description for each. This short description is also presented
to the user when installing an app (see Figure 1 for an ex-
ample app). The user can click on the info button i next to
each permission to read additional explanations in a popup.
The user has to accept all permissions in order to utilize the
app. These apps can be found on Google Chrome Web Store
(and other Google stores), where users can rate and review
them. In this work, we will focus on content-related per-
missions. Hence, as discussed in Section 2, we di↵erentiate
between two levels of access: (1) full access, which includes
the drive readonly and drive permissions and (2) per-
file access that includes the drive file permission. Google
Drive does not o↵er the per-type permissions option.

3.2 Dataset
One of the main challenges when studying the privacy loss

in 3rd party cloud apps is the absence of public datasets with
realistic file distributions, collaborator distributions, sharing
patterns, 3rd party app installations, etc. We benefit in this
section from a dataset that we have collected in a previous

Permission Short Name

View the files in your Google Drive.

drive readonly

View and manage the files in your

Google Drive.

drive

View and manage Google Drive files

that you have opened or created

with this app.

drive file

View your Google Drive apps.

drive apps readonly

Table 2: Requested permissions with the short reference
name

Figure 1: Current permissions interface of Google Drive

work via the PrivySeal4 service [9]. We build our analysis
on it in order to evaluate the VFC of users in a realistic
context. The dataset, henceforth referred to as the Privy-
Seal Dataset, was anonymized and contained metadata-only
information. It included a subset of the files’ metadata of
183 PrivySeal users in addition to the Google Drive apps
installed by those users prior to authorizing PrivySeal’s app
(the drive apps readonly permission was requested by
PrivySeal). Each user had a minimum of N

files min

= 10
files in total and at least P

min shared

= 5% of files that are
shared. The dataset specifically contained:

• list of user IDs (anonymized via a one-way hash function);

• IDs of files in each user’s Google Drive,

• list of anonymized collaborators’ IDs for each file ID;

• list of apps with full-access installed by each user;

• the vendor of each app.

In total, the number of users in addition to collaborators
was 3422. Overall, these users had installed 131 distinct
4https://privyseal.epfl.ch

26

How the VFC evolves with more shared data:

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

183 133 87 58 43 35 22

0

5

10

15

5 10 20 30 40 50 60
Minimum % of shared files per user

C
o
ve

ra
g

e
 v

a
lu

e

Self_VFC Colls_VFC Agg_VFC

Minimum % of Shared Files per User

V
FC

 v
al

ue

26

How the VFC evolves with more shared data:

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

183 133 87 58 43 35 22

0

5

10

15

5 10 20 30 40 50 60
Minimum % of shared files per user

C
o
ve

ra
g

e
 v

a
lu

e

Self_VFC Colls_VFC Agg_VFC

Minimum % of Shared Files per User

V
FC

 v
al

ue

Users with at least 5% of files shared

26

How the VFC evolves with more shared data:

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

183 133 87 58 43 35 22

0

5

10

15

5 10 20 30 40 50 60
Minimum % of shared files per user

C
o
ve

ra
g

e
 v

a
lu

e

Self_VFC Colls_VFC Agg_VFC

Minimum % of Shared Files per User

V
FC

 v
al

ue

Users with at least 5% of files shared

Number of users

26

How the VFC evolves with more shared data:
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

183 133 87 58 43 35 22

0

5

10

15

5 10 20 30 40 50 60
Minimum % of shared files per user

C
o
ve

ra
g
e
 v

a
lu

e

Self_VFC Colls_VFC Agg_VFC

Minimum % of Shared Files per User

V
FC

 v
al

ue

Users with at least 5% of files shared

Number of users

139% of the Self-VFC

27

0 5 10 20 30 40 50 60

139%
200%

306%
256%

582% 610% 623%

% Privacy Loss due to Collaborators relative to that due to the User

Minimum % of Shared Files per User

28

Research Question- 1
How significant is the impact of collaborators’ app adoption

decisions on the users’ privacy loss?

Collaborators’ decisions are highly significant.

They become more important as the sharing frequency increases

29

Research Question- 2

Do Current Permission Models
help user minimize the VFC?

How can we improve them?

30

Current Permission Models

30

Current Permission Models

31

Current Permission Models

History-Based (HB) Insights Model

History-Based (HB) Insights Model

You are made aware of the percentage of your files that
the vendor already has (i.e. the Aggregate VFC)

(due to your or your collaborators’ decisions)
You

Baseline Permission Models

HB Insights Permission Models

HB Insights Permission Models

Selecting the vendor with maximum existing
access results in minimizing the aggregate VFC

(proof in the paper)

HB Insights Permission Models

Selecting the vendor with maximum existing
access results in minimizing the aggregate VFC

(proof in the paper)

User study

37

38

Online Study Setup
Recruited users via Crowdflower (141 users)

Baseline group (BL): 72 users History-based group (HB): 69 users

38

Online Study Setup
Recruited users via Crowdflower (141 users)

Baseline group (BL): 72 users History-based group (HB): 69 users

Introductory Survey

38

Online Study Setup
Recruited users via Crowdflower (141 users)

Baseline group (BL): 72 users History-based group (HB): 69 users

4 modulesIntroductory Survey

38

Online Study Setup
Recruited users via Crowdflower (141 users)

Baseline group (BL): 72 users History-based group (HB): 69 users

4 modulesIntroductory Survey Concluding Survey

39

Demographics
3. Module 3: do users consider the di↵erences in access

levels obtained by vendors that collaborators installed?

In all modules, whenever the user was asked to choose
an app, she was presented with a list of 12 apps (Figure 5
shows an example app). Only two of these apps were rel-
evant to the task purpose, and they were placed on top of
the list (randomly positioned as first or second). With this
setup, we wanted to mimic the realistic setup of app brows-
ing while not squandering the user’s e↵ort on finding apps.
All apps had the same full access permissions too (namely
drive permission). Unlike in Chrome Store, we removed
elements such as ratings, user reviews, and screenshots and
kept a minimal interface. This is all in order to reduce the
distractions from factors outside the study. We refer the user
to the work of Kelly et al., [10] who investigated the e↵ects
of those elements on users’ decisions for Android apps.

In order to account for fatigue and learning e↵ects, mod-
ules 1, 2, and 3 were presented in a random order for users.
We piloted our experimental setup in two stages: with col-
leagues and with online users from the CrowdFlower com-
munity itself. For reviewing the online pilot testers work,
we embedded a Javascript code for session recording in our
study’s web page, which allowed us to view the user’s mouse
and keyboard actions on our side.

Demographics: We had 157 users who completed the study.
Based on manually reviewing the users’ inputs, we removed
16 users who were inputting irrelevant free-text in the survey
in the study. We thus report the results of 141 users, 72 of
which were in the BL group and 69 in the HB group. In Ta-
ble 3, we describe the participants’ demographics based on
the introductory survey. Of these participants, 66.4% were
males and 33.6% were females. They were between 18 and
62 years old, with a median of 31. Moreover, 42.3% of the
participants had worked or studied in IT before. Partici-
pants were mostly from India (37%), USA (35%), Britain
(7%), Germany (7%), and Canada (7%).

CrowdFlower presents the users with an optional satisfac-
tion survey after completing the study, and 49 users took this
survey. On average, the study received 4.2/5 for instructions
clarity, 3.8/5 for questions’ fairness, 3.8/5 for ease of job,
3.6/5 for pay su�ciency (before the bonus was rewarded).
This ensures that participants’ behavior has not been af-
fected by either a lack of time to complete the task or the
task design in general.

4.4 Study Details and Results
We now move to the detailed description of the modules

and the results obtained. These modules are summarized in
Figure 6, to which we refer henceforth. We also show sample
screenshots from the online study in Figure 7. The results
are also presented in Table 4.

Module 1 (Self-History Scenario): tests whether the
user is more likely to select an app from the same vendor
she has just installed from before. In step (a), the user is
made aware the she installed an app from a specific vendor v
(Figure 7b). In step (b), she is asked to install6 an app that
satisfies the given purpose (Figure 7c) among a list of apps.
Two of the listed apps were relevant, and one of them was
from vendor v itself.

6Users were informed that this is a role-playing study, and no
apps were actually installed.

Age 18-62 (median 31 years)

Gender 35.5% Female
64.5% Male

Occupation 59.6% full-time employees
14.2% student
6.4% part-time worker
8.5% self-employed
5.0% homemaker
6.4% Unemployed/retired

IT Experience 41.8% Have worked or studied in IT

Degree 19.1% High school
7.1% Trade/tech./vocational training
51.1% Associate or Bachelor’s degree
22.7% Post Graduate Degree

Countries 35.0% USA
37.5% IND
7.5% GBR
6.9% DEU
6.9% CAN
7.4% AUS+IRL+ NLD + PAK

Table 3: Demographics in our user study; N = 141

Despite the participants being informed one step earlier
that they installed an app from“thetimetube.com”, that did
not make a di↵erence in the BL case: half of the users still
chose the app from the new vendor “nitrosafe.org” (cf. Ta-
ble 4. In the absence of traditional signals that users follow
for deciding on apps (reviews, ratings, permissions), partici-
pants apparently made decisions that cancelled out, making
the two apps equally favored across participants. The vast
majority of users were not approaching the installa-
tion from the angle of keeping their data with fewer
shareholders. Based on their provided justifications, they
rather looked for other cues, such as selecting the app that,
in their opinion, has a more comprehensive description, a
more professional logo, a better sounding name, or a more
trustable URL. Still, 12 users have explicitly mentioned in
their text input that they chose an app because it is from
the same vendor they have dealt with earlier. Even then,
neither of them has alluded to a privacy motivation behind
the choice. These 12 participants mainly provided cross-app
compatibility, interface familiarity, and satisfaction with the
previous vendor as justifications. For example, one partici-
pant wrote: “I favoured Malware Scanner due to the fact that
the name ‘thetimetube.com’ was in the last app installed, and
I tend to install apps from the same company due to cross-
app compatibility usually found in apps by the same com-
pany.” Interestingly, two users justified their installation
of the app from the new vendor (nitrosafe.org) by writing
that they had just installed an app from the same company
before. This indicates that, even when users try to ac-
count for previous decisions, they might find it dif-
ficult to remember the previous app vendors. Given
that our study had a short time span separating the current
from the previous installation, we expect that such mistakes
would be even more common in real scenarios when app
installation instances are separated by longer time spans.
The HB group witnessed a much larger proportion of users

who favored the option with less privacy loss. 72.2% of the

40

Module 1

You installed

by: Company 1

How likely are users to select an app from the
same company they installed from before?

40

Module 1

You installed

by: Company 1

by Company 1

by Company 2

. Would you choose: ?OR

How likely are users to select an app from the
same company they installed from before?

Module 1 - HB Group

Module 1 - HB Group

50%

Results

Baseline

75.4%
History-based

 p-value = 0.003Fisher’s exact test

Probability of installing the more privacy preserving option

Results

Baseline groups participants looked for other reasons:
(more comprehensive description, more professional logo, a better sounding name, or a more trustable URL)

Difficulty of remembering the previous vendors
(e.g. 2 participants justified by mentioning that the app comes from the same vendor, but actually selected a different one)

44

Module 2
How likely are users to select the same app that their

collaborator have used before?

44

Module 2

Your friend
John

 installed by: Company 1

How likely are users to select the same app that their
collaborator have used before?

44

Module 2

Your friend
John

 installed by: Company 1

by: Company 1

by: Company 2

. Would you choose: ?OR

How likely are users to select the same app that their
collaborator have used before?

52.8%

Results

Baseline

88.4%
History-based

 p-value < 0.001

Probability of installing the more privacy preserving option

Fisher’s exact test

Results

Results

Quote: “Mytools.com is the maker of PDF Mergy and since they already have ALOT of
access to my files (thanks to John), might as well stick with the brand and not open up

more files to another company.”

47

Module 3

Your friend
Lisa

 installed Company 1

How likely are users to select an app from the same vendor
that their collaborator have used before?

47

Module 3

Your friend
Lisa

 installed Company 1

Company 1

Company 2

. Would you choose: ?OR

How likely are users to select an app from the same vendor
that their collaborator have used before?

58.3%

Results

Baseline

82.6%
History-based

 p-value = 0.002

Probability of installing the more privacy preserving option

Fisher’s exact test

49

Module 4

How likely are users to consider the differences in access
levels of vendors that collaborators authorized?

50

Module 4
Your friend

Lisa
 installed Company 1

50

Module 4
Your friend

Lisa
 installed Company 1

Your friend
John

 installed Company 2

50

Module 4
Your friend

Lisa
 installed Company 1

Your friend
John

 installed Company 2

Your share
more files
with Lisa

50

Module 4
Your friend

Lisa
 installed Company 1

Your friend
John

 installed Company 2

Company 1

Company 2

. Would you choose: ?OR

Your share
more files
with Lisa

44.4%

Results
Probability of installing the more privacy preserving option

Baseline

82.6%
History-based

 p-value = <0.001Fisher’s exact test

Results

Quote: “This is the app that John already uses, and he has access to all of my files. The
PDF Mergy app is used by Lisa, but she only has access to part of my files.”

53

Research Question- 3

How do the History-based Decisions
affect users’ privacy at scale?

54

Idea: Study the network effect of
History-based decisions

installed from v1

User A

54

Idea: Study the network effect of
History-based decisions

installed from v1

User A

installed from v1

User B

54

Idea: Study the network effect of
History-based decisions

installed from v1

VFC for User A increases by 0

User A

installed from v1

User B

55

Issue: We do not have access to large
networks of cloud storage and apps’ users.

Create networks with similar properties.

Network 1: Inflated Google Drive Network

Start from PrivySeal users’ network.

*Newman. The structure and function of complex networks. SIAM review, 2003

Extract the degree distribution.

Network 1: Inflated Google Drive Network

Start from PrivySeal users’ network.

*Newman. The structure and function of complex networks. SIAM review, 2003

Create a large scale connected graph with a
similar distribution using the Configuration Model*.

Extract the degree distribution.

Network 1: Inflated Google Drive Network

Start from PrivySeal users’ network.

*Newman. The structure and function of complex networks. SIAM review, 2003

Create a large scale connected graph with a
similar distribution using the Configuration Model*.

Extract the degree distribution.

Network 1: Inflated Google Drive Network

Start from PrivySeal users’ network.

*Newman. The structure and function of complex networks. SIAM review, 2003

- 18,000 users
- 138,440 edges
- average degree: 15

Network 2: Author Collaboration Network

Rely on Microsoft Academic Graph
(papers, authors, affiliations)

Use a snapshot of 50,000 papers to
construct a collaboration graph

Network 2: Author Collaboration Network

Rely on Microsoft Academic Graph
(papers, authors, affiliations)

Obtain a graph

Use a snapshot of 50,000 papers to
construct a collaboration graph

Network 2: Author Collaboration Network

Rely on Microsoft Academic Graph
(papers, authors, affiliations)

Obtain a graph

Use a snapshot of 50,000 papers to
construct a collaboration graph

Network 2: Author Collaboration Network

Rely on Microsoft Academic Graph
(papers, authors, affiliations)

- 41,000 users
- 199,980 edges
- average degree: 4

Network 3: Teams Collaboration Network

Take the previously constructed
collaboration graph

Compute the Strongly Connected
Components (SCC)

Network 3: Teams Collaboration Network

Take the previously constructed
collaboration graph

Each team is a SCC.

Compute the Strongly Connected
Components (SCC)

Network 3: Teams Collaboration Network

Take the previously constructed
collaboration graph

Each team is a SCC.

Compute the Strongly Connected
Components (SCC)

Network 3: Teams Collaboration Network

Take the previously constructed
collaboration graph

- 16,400 users
- 1700 teams

Each team is a SCC.

Compute the Strongly Connected
Components (SCC)

Network 3: Teams Collaboration Network

Take the previously constructed
collaboration graph

- 16,400 users
- 1700 teams

Assumption:
Team members only account for
other team members’ decisions

Keep simulation properties realistic:

- Distribution of shared files
- Number of apps installed

Match the PrivySeal dataset

Keep simulation properties realistic:

- Apps vendors
- App installation count

Select at random on each step among1000
apps from Chrome Store

61

Fully-Aware model (FA)
(always selects the HB option)

Experimental HB Model (EHB)

Experimental Baseline Model (EBL)

3 User Models

62

3 User Models

Fully-Aware model (FA)
(always selects the HB option)

Experimental HB Model (EHB)

Experimental Baseline Model (EBL)

Users are self-interested and do not cooperate on
app installation decisions.

62

3 User Models

Fully-Aware model (FA)
(always selects the HB option)

Experimental HB Model (EHB)

Experimental Baseline Model (EBL)

Users are self-interested and do not cooperate on
app installation decisions.

63

Simulation Steps
Select a user

(based on the installation frequency of the user)

63

Simulation Steps
Select a user

(based on the installation frequency of the user)

Select an app
(based on the installation frequency of the app)

63

Simulation Steps
Select a user

(based on the installation frequency of the user)

Select an app
(based on the installation frequency of the app)

Choose to install the app or one of its related apps
(based on the user model)

63

Simulation Steps
Select a user

(based on the installation frequency of the user)

Select an app
(based on the installation frequency of the app)

Choose to install the app or one of its related apps
(based on the user model)

Compute the average Aggregate VFC per user
(based on the user model)

64

Simulation Results

Growth of the Privacy Loss is curtailed as users install more apps.

65

Inflated Network Authors’ Network Teams’ Network

Growth of the Average aggregate VFC with more apps installed by users.

How much is the privacy loss reduction by the end of the simulation
(w.r.t. the baseline (EBL))?

66

Inflated Network Authors’ Network

Users
modeled by
our study

(EHB)

Users who
always take
the optimal

decision
(FA)

41% 28%

70% 40%

How much is the privacy loss reduction by the end of the simulation
(w.r.t. the baseline (EBL))?

66

Inflated Network Authors’ Network

Users
modeled by
our study

(EHB)

Users who
always take
the optimal

decision
(FA)

41% 28%

70% 40%

Difference due to the
graph connectivity

How much is the privacy loss reduction by the end of the simulation
(w.r.t. the baseline (EBL))?

67

Users
modeled by
our study

(EHB)

Users who
always take
the optimal

decision
(FA)

23%

45%

Teams’ Network

Assumption:
Team members only account for other team

members’ decisions

68

Take-aways

The impact of collaborators on user’s privacy significantly important.

With a Usable privacy solutions, we show how to mitigate this issue.

With large networks, the network effect of HB decisions increases.

69

Future Work
History based insights are a basic building block for:

Data-driven, Usable privacy

69

Future Work
History based insights are a basic building block for:

Data-driven, Usable privacy

Communicating risk to the users in their own language

69

Future Work
History based insights are a basic building block for:

Data-driven, Usable privacy

Communicating risk to the users in their own language

Context of permissions, privacy policies, etc.

hamzaharkous.com
hamza.harkous@gmail.com

http://hamzaharkous.com
mailto:hamza.harkous@gmail.com

hamzaharkous.com
hamza.harkous@gmail.com

http://hamzaharkous.com
mailto:hamza.harkous@gmail.com

